Dynamics of axially functionally graded pipes conveying fluid using a higher order shear deformation theory

نویسندگان

چکیده

This study presents a novel approach for addressing dynamical characteristics of fluid conveying axially functionally graded pipes. The variation material properties the pipe along axial direction is taken into account according to power-law function. Owing unified expression displacement field, developed model can be recast classical Euler – Bernoulli and Timoshenko tube models as well newly higher order shear deformable model; latter satisfies zero-shear conditions on free surfaces, hence yields more realistic results. system partial differential equations governing dynamics pipes derived through utilization Hamilton’s principle. Differential quadrature scheme used discretize generate numerical Detailed investigations current fluid-solid interaction problem elucidate effects gradation pattern, transverse deformation distribution profile radial velocity natural frequencies critical velocity, which significant design parameter, also determined by means procedures in this study.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

متن کامل

Thermoelastic Analysis of a Functionally Graded Simple Blade Using First-Order Shear Deformation Theory

In this article, the thermo-elastic behavior of a functionally graded simple blade subjected to the mechanical and thermal loadings is presented, applying a semi-analytical method and a variable thickness cantilever beam model. A specific temperature gradient is employed between the root and the edges of the beam. It is assumed that the mechanical and thermal properties are longitudinal directi...

متن کامل

Stability Optimization of Functionally Graded Pipes Conveying Fluid

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining t...

متن کامل

Free vibration behavior of bi-directional functionally graded plates with porosities using a refined first order shear deformation theory

This paper proposes the refined first order shear deformation theory to investigate the free vibration behavior of bidirectional functionally graded porous plates. This theory satisfies the transverse shear stress free conditions at the top and bottom of the plate, thus avoids the need of a shear correction factor. The rule of mixtures is employed to compute the effective material properties an...

متن کامل

Flexural behavior of porous functionally graded plates using a novel higher order theory

In this paper, the flexural response of functionally graded plates with porosities is investigated using a novel higher order shear deformation theory, which considers the influence of thickness stretching. This theory fulfills the nullity conditions at the top and bottom of the plate for the transverse shear stresses, thus avoids the need of a shear correction factor. The effective material pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International advanced researches and engineering journal

سال: 2021

ISSN: ['2618-575X']

DOI: https://doi.org/10.35860/iarej.878194